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ABSTRACT

In-app embedded browsers are commonly used by app developers
to display web content without having to redirect the user to heavy-
weight web browsers. Just like the conventional web browsers, em-
bedded browsers can allow the execution of web code. In addition,
they provide mechanisms (viz., JavaScript bridges) to give web code
access to internal app code that might implement critical function-
alities and expose device resources. This is intrinsically dangerous
since there is currently no means for app developers to perform
origin-based access control on the JavaScript bridges, and any web
code running in an embedded browser is free to use all the exposed
app and device resources. Previous work that addresses this prob-
lem provided access control solutions that work only for apps that
are built using hybrid frameworks. Additionally, these solutions fo-
cused on protecting only the parts of JavaScript bridges that expose
permissions-protected resources. In this work, our goal is to provide
a generic solution that works for all apps that utilize embedded web
browsers and protects all channels that give access to internal app
and device resources. Towards realizing this goal, we built Draco,
a uniform and fine-grained access control framework for web code
running on Android embedded browsers (viz., WebView). Draco
provides a declarative policy language that allows developers to
define policies to specify the desired access characteristics of web
origins in a fine-grained fashion, and a runtime system that dynami-
cally enforces the policies. In contrast with previous work, we do
not assume any modifications to the Android operating system, and
implement Draco in the Chromium Android System WebView app
to enable seamless deployment. Our evaluation of the the Draco
runtime system shows that Draco incurs negligible overhead, which
is in the order of microseconds.
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1. INTRODUCTION

Mobile application (or "app" for short) developers heavily rely
on embedded browsers for displaying content in their apps and
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libraries. A previous study shows that 85% of the apps in the Google
Play store contain at least one embedded browser (i.e., WebView on
Android) [1]. Other than the natural use case of just displaying web
content, there are some interesting ways to use these web containers
in apps: advertisement libraries use embedded browsers to display ad
content within apps, app developers can rely on embedded browsers
to tightly couple web sites with similar functionality to the app in
order to reuse web site’s Ul code and to provide fast and convenient
updates. Additionally, hybrid frameworks (e.g., PhoneGap) rely on
embedded browsers to enable app developers to write their apps
purely with web languages (e.g., JavaScript and HTML) with the
premise of ease of programming and portability to other mobile
operating systems.

Even though they are extremely useful, these embedded browsers
come with their own security problems. They are inherently given
the ability to execute web code (i.e., JavaScript). Additionally, through
the use of JavaScript bridges, they can allow web code to interact
directly with app components (i.e., internal Java code). Indeed, these
bridges are what hybrid apps rely on to allow access to system re-
sources such as contact list, camera, Bluetooth, SMS etc. Obviously,
the misuse of this functionality by malicious web domains can be
detrimental to the user and to the app since an attacker, whose web
domain (hence malicious code) was loaded into a WebView can
exploit the existing bridges to collect information about the user
and even change the app’s behavior. The main problem here is that
there is no means of performing access control on the untrusted code
running within a WebView, any origin loaded into the WebView is
free to use all the available JavaScript bridges. With the introduction
of API level 17, Android made an attempt to mitigate the negative
consequences of this problem (i.e., accessing Android runtime via
Java reflection) by introducing mechanisms to allow the developer
to specify which methods will be exposed to JavaScript. However,
this does not eliminate the problem as the untrusted code loaded
into a WebView still inherits the same permissions as the host app
and can exploit just the exposed parts of the bridge to perform its
malicious activities. Since the origin (as in same origin policy) infor-
mation is not propagated through the bridge, the app developer has
no control over this access attempt and cannot perform any access
control based on the origin.

Prior research studies on security issues in WebViews and Java-
Script bridges fall short in at least four significant ways. First, they
have limited scope, since they mainly target hybrid apps and create
solutions that work only for the hybrid frameworks [2]. Second,
they are incomplete, since they focus only on protecting permission-
protected resources (such as the camera and microphone) [2, 3],
and disregard other cases where a foreign domain is inadvertently
allowed to access sensitive information (such as a user’s social secu-
rity number). Third, they rely on whitelisting policies that always
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block unknown domains and therefore deprive developers of the
flexibility to make decisions based on user input. Fourth, they are ad
hoc since they focus only on a subset of resource access channels
and do not provide a uniform solution that works across all channels.

The current disorganized and complex nature of interactions be-
tween web origins and applications creates confusion for developers.
From our inspection of the apps in the Google Play store, we ob-
served that the danger of loading untrusted web origins and exposing
resources to them is not very well understood by app developers.
Developers mistakenly assume that targeting API versions that ad-
dress some of the issues with embedded browsers (e.g., using API
level 17 or higher on Android) will protect their apps from these
vulnerabilities. When they seem to be aware of the danger, assuring
protection seems to be burdensome, and they tend to make mistakes
while trying to evade the problem by implementing navigation con-
trol logic or multiple WebViews with different levels of exposure.
However, even taking the correct programmatic precautions does not
completely eradicate the problem since there is no guarantee that a
trusted web domain will consist only of trusted components. Indeed,
it is quite common for web pages to use an iframe in order to display
ad content, and once loaded, there is no means for a developer to
protect the resources that were exposed to web content from these
potentially malicious components. All of this creates the necessity
for an access control mechanism targeting web code where devel-
opers are given the ability to specify desired access characteristics
of web origins in terms of app and device resources. Developers
should be allowed to specify what capabilities should be given to
web origins with a fine granularity, and if they need user input to
make decisions. This brings forth the need for a policy language,
which developers can use to describe the expected behavior and use
of resources by web origins, without having to rely on any complex
programmatic structures, and the need for a mechanism that will
take into consideration the developer policies to make access control
decisions.

In this work, we systematically study the vulnerabilities that are
caused by loading untrusted web domains in WebViews on Android.
We show cases where top-selling Android apps suffer from these
vulnerabilities. Based on the threats we identified, we designed an
easy to use, declarative policy language called Draconian Policy
Language (DPL) for developers to specify access control policies
on resources exposed to web origins. DPL allows declaration of
policies with different levels of trust (i.e., fully-trusted, semi-trusted,
untrusted) for different origins. We implement a system called Draco
for fine-grained access control of web code: Draco enables app devel-
opers and device manufacturers (OEMs) to insert explicit Draconian
policies into their apps, and dynamically enforces these policy rules
at runtime in an efficient manner. Our contributions can be summa-
rized as follows:

1. We model web origin access and design a new policy language
for app developers and device manufacturers to dictate how
web origins should access resources.

2. We provide a fine-grained access control runtime system for
web containers to make access control decisions based on ori-
gins and their expected behavior without requiring OS modi-
fications.

3. We provide a real world implementation that works on An-
droid devices and evaluate the overhead of our approach.

The rest of the paper is organized as follows. In section 2, we give
background information on how the Android embedded web browser
works. In section 3, we describe the problems caused by the lack of a
uniform access control mechanism in WebView in more detail, show

our analysis on the use of WebView APIs by the top free apps on
Google Play Store, and present case studies of top-selling Android
apps that suffer from this problem. In section 4, we present the
Draco framework, which consists of a declarative policy language for
controlling web code execution and a runtime system that enforces
the policies in Chromium’s Android WebView implementation. In
section 5, we evaluate our implementation. In section 6, we present
related work on privilege separation and WebView vulnerabilities.
Finally in section 7, we conclude with a discussion of our future
work.

2. BACKGROUND

We refer to the applications that utilize WebViews as mobile
web apps [1]. In order to understand the vulnerabilities caused
by embedded browsers in mobile web apps, we need to have an
understanding of the functionalities provided by these browsers. For
the rest of the paper, we will focus on Android WebView, which is
the widely-used open source embedded browser that forms the basic
building block for modern web browser applications on the Android
platform. This web container allows app developers to display web
content fetched from the local storage or from the web. Developers
use WebViews to seamlessly integrate web content into their apps,
without having to rely on a full-featured, heavy-weight web browser
to render web content.

2.1 WebView Implementation

WebView was first introduced in the API level 1 of the Android
platform. It inherits from Android View and has additional render-
ing capabilities for displaying web pages. In Android 4.3 (Jelly-
Bean) and earlier, WebView implementation is based on Apple’s
WebKit browser engine [4], which powers several web browsers
such as Safari, Google Chrome and Opera. Starting from Android
4.4 (KitKat), the WebView implementation is instead based on
Chromium [5], which is Google’s widely-used, open-source browser
project. Chromium uses Google’s fork of WebKit, called Blink, as
a rendering engine, and Google’s high-performance V8 JavaScript
engine.

Up until Android 4.4 (inclusive), the WebView implementation
resided in the Android Open Source Project (AOSP) [6]; hence,
any update to the WebView requires modifications to the operating
system and can be pushed to users only with an OS update. With the
introduction of Android 5 (Lollipop), WebView became a system
app (called Android System WebView), presumably to ship updates
quickly to the WebView code through Google Play. Apps that use
WebViews load WebView code as a library into the app’s process
from the System WebView app.

2.2 WebView API

The WebView API allows app developers to load web content by
calling the methods loadURL (), loadData(), loadDataWithBaseURL ()
and postURL () with a string argument that is the URL of the desired
web content. JavaScript can be enabled on a WebView by calling
setJavaScriptEnabled() on a WebSettings instance of a WebView.
The source of JavaScript can be a file on the local storage or a remote
domain. Additionally, the app can directly execute JavaScript by
calling loadURL () with a string that starts with “javascript:” and is
followed by the JavaScript code.

Navigation. Android developers have the option of controlling nav-
igation within WebViews. Whenever the user clicks on a link in
a page on a WebView, the developer can intercept this to make
a decision on how this page should be loaded, or if it should be
loaded at all. Developers have the option of allowing page loading



from only certain domains, and open pages from untrusted domains
in the web browser. This can be implemented by overriding the
shouldOverrideUrlLoading() callback method and checking the do-
main of the page before it is loaded .

JavaScript interfaces. The WebView API allows inserting Java ob-
jects into WebViews using the addJavaScriptInterface() method.
JavaScript loaded in the WebView can have access to application’s in-
ternal Java code, giving web code the ability to interact more tightly
with an app, and in some cases get access to system resources (e.g.,
hybrid frameworks). Mobile web apps commonly utilize JavaScript
interfaces to meld web content with application code and provide
users with a richer user experience compared to pure web apps.

Listing 1 shows how JavaScript interfaces can be used in appli-
cations. First, the app needs to register a Java object with a spe-
cific WebView instance and give this object a name. As shown
in the example, this can be done by addJavaScriptInterface(new
MyJSInterface(),"InjectedObject”). After this, JavaScript code
running in the WebView can execute the methods of this object
by using the name of the object and the name of the method, as in
InjectedObject.myExposedMethod().

Android API 17 introduced the use of @JavaScript annotation tag
to export only the desired Java methods of a Java class to JavaScript,
primarily to prevent reflection-based attacks, where an adversary can
use Java reflection to get access to the Android runtime and then ex-
ecute arbitrary commands via calling InjectedObject.getClass().
forName("java.lang.Runtime").getMethod("getRuntime”,null).
invoke(null,null).exec(cmd). The use of the annotations is illus-
trated in Listing 1, where only the annotated method is made acces-
sible to JavaScript. Even though API level 17 addresses a critical
problem, it does not completely eradicate all the issues with Web-
Views. WebView still provides no access control on the JavaScript
interfaces; any domain whose content was loaded into a WebView
is free to use all the exported parts of the exposed Java object.

Listing 1: JavaScript Interfaces in Android WebView

mWebView.addJavaScriptInterface(new MyJSInterface(),
"InjectedObject");
//...
public class MyJSInterface {
@JavaScriptInterface
public void myExposedMethod() {
// do some sensitive activity
3
public void myHiddenMethod() {
// JavaScript cannot access me, do some other activity

}

JavaScript event handlers. The WebView API allows develop-
ers to handle the alert, prompt and confirm JavaScript events, by
registering the onJsAlert(), onJsPrompt() and onJsConfirm() Java
callback methods, respectively. Whenever the JavaScript side calls
any of these event methods, their respective handler will be called,
if it is overridden. The developer is free to implement any logic in
these event handlers. In fact, these event handlers are used in some
hybrid frameworks to connect the web side to the local side.

Handling HTMLS5 API requests. The rise of HTMLS5 has brought
in a set of APIs that can give web applications the ability to access de-
vice hardware via JavaScript. Some examples to these HTMLS APIs
are Geolocation and getUserMedia, which enable access to GPS
and to media devices such as camera and microphone, respectively.
When a web domain requests access to one of these devices, the user
should be prompted to grant access to this request. Starting from API

level 21, Android WebView provides support for these HTML5 APIs
and introduces mechanisms to grant or deny requests for accessing
device hardware. In order to handle requests from web origins, the
developer needs to make use of onGeolocationShowPrompt (for ge-
olocation), and onPermissionRequest (for media devices) to grant or
deny permission to the requests. In Listing 2, we show an example
of how HTMLS geolocation permission can be handled on Android.
Listing 3 shows how granting permissions for HTMLS request will
be combined with Android 6.0’s run time permissions. Evidently,
handling HTMLS5 requests can get cumbersome when combined
with Android 6.0’s run time permissions.

Listing 2: Granting access to HTMLS geolocation requests

@Override
public void onGeolocationPermissionsShowPrompt(String origin,
GeolocationPermissions.Callback callback) {
myCallback = callback; //myCallback is global
//If the permission is not yet granted, ask for it.
if (ContextCompat.checkSelfPermission(getApplicationContext(),
Manifest.permission.ACCESS_FINE_LOCATION)
!= PackageManager.PERMISSION_GRANTED) {
ActivityCompat.requestPermissions(thisActivity, new
String[J{Manifest.permission.ACCESS_FINE_LOCATION},
MY_PERMISSIONS_REQUEST_ACCESS_FINE_LOCATION);
} else { // Permission is already granted
callback.invoke(origin, true, false);

}

Listing 3: Run time permissions on Android

@Override
public void onRequestPermissionsResult(int requestCode,
String permissions[], int[] grantResults) {
switch (requestCode) {
case MY_PERMISSIONS_REQUEST_ACCESS_FINE_LOCATION: {
if (grantResults.length > 0 && grantResults[@] ==
PackageManager.PERMISSION_GRANTED) {
// permission was granted, do your location task
myCallback.invoke(myOrigin, true, false);
} else { // permission denied
// disable functionality depenging on this permission.
¥

//Handle other permissions...

3. UNDERSTANDING THE PROBLEM

In this section, we will discuss the lack of access control in Java-
script bridges in WebView. We will argue that even though the
Android APIs for handling HTMLS requests provide the means to
perform limited origin-based access control (i.e., only for a subset
of the device resources), developers simply avoid leveraging that
due to the cumbersome and complex nature of the permission han-
dling APIs. Finally, we will present our case studies on two mature
and popular free Android apps that suffer from the nonexistence of
access control in WebViews.

3.1 Lack of Access Control in WebView

The vulnerabilities in WebViews have been investigated by previ-
ous work [1,7, 8,9, 10]. A recurrent and fundamental problem is
that there is no way of performing access control on the foreign code
executed within a WebView; any origin loaded into the WebView is
free to use the exposed JavaScript bridges. In particular, since the
origin information is not propagated to the app through the bridges,
the app developer has no control over the behavior of foreign code
and cannot make access decisions based on the real origin of the



invocation. With the introduction of API level 17, Android addressed
some critical problems of WebViews such as reflection-based attacks
by introducing Java annotations into the WebView API to limit the
extent of exposure. However, this does not completely solve the
problem as the foreign code loaded into the WebView still has the
same permissions as the host app, and it can exploit the exposed
parts of the JavaScript bridges to perform malicious activities such
as accessing system resources, getting the user’s private information,
and executing code that was meant for use only by the web domain
of the developer.

In order for a JavaScript bridge to be exploitable, the app must
load untrusted content into the associated WebView. An obvious
way is by allowing the WebView to navigate to untrusted websites or
to sites with untrusted content (e.g., iframe). Previous work shows
that navigation to untrusted sites is common among applications:
34% of the apps that use WebViews do allow the user to navigate
to third-party websites [1], and 42.5% of the apps that register a JS
interface allow the user to navigate to third-party websites or to web-
sites with untrusted content [8]. In order to verify these results, we
picked three top-selling Android apps that demonstrate the common
vulnerabilities identified by previous work: USPS, CVS Caremark,
and JobSearch by Indeed. Through manually analyzing their code,
we observed that developers do try to take precautions against the
attacks on JS bridges by loading pages from untrusted domains in
either the browser instead of the WebView (e.g., USPS app), or in
separate WebViews with limited functionality which they create for
this purpose (e.g., JobSearch app by Indeed). However, developers
can make mistakes while implementing the navigation control logic.
For example, in the USPS app, the developer checks if the loaded
URL contains “usps.com” rather than checking if the host’s domain
name matches “usps.com”, mistakenly allowing any non-USPS web-
site that partially matches “usps.com” (e.g., musps.com, uusps.com).
Additionally, developers might make wrong assumptions about the
navigation behavior of the WebView. We have identified that the
app developer might assume that the content provided to the Web-
View intrinsically does not allow navigation (i.e., it does not contain
hyperlinks) and provide the user with functionalities that can break
this assumption (e.g., allowing users to input hyperlinks) as in Job-
Search app by Indeed, or they simply do not foresee that a specific
WebView can be used by the user to navigate out of the trust-zone of
the app by just following the links on the web pages as in the CVS
Caremark app. We will examine the CVS Caremark and JobSearch
apps in more detail later in this section.

Although it may look like correct implementation of navigation
control would solve the JavaScript bridge exploitation issues (and
fix the USPS app), we argue that it is simply an insufficient measure
to protect JavaScript bridges. Even if developers implement all
navigation behavior correctly and do not allow the user to navigate
to untrusted web origins within the context of their apps, the pages
from trusted domains might include untrusted components such as
iframes, which also inherit the same permissions as the app and
have access to all the exposed bridges. Thus, the system does not
provide the necessary means for developers to completely protect
their apps against attacks on the JavaScript bridges.

3.2 Prevalence

While the current design of JavaScript bridges by default grants
access to a domain for all the exposed resources, for HTMLS APIs
the access model is exactly the opposite; the default behavior is
to deny all the requests by a domain for a permission unless the
onPermissionRequestResult and onPermissionsRequest or
onGeolocationPermissionPrompt methods are overridden by the app
developer. In order to better understand how this difference between

the JavaScript bridges and the HTML5 APIs affects the develop-
ers, we statically analyzed the top 1337 free Android applications
from 21 Google Play categories selected at our discretion. Table 1
depicts the prevalence of WebViews and how often WebView APIs
are used in these apps. Here, we distinguish ad and core WebViews
(WebView in the core of the app) based on our comprehensive list of
package names for ad libraries, and also give the cumulative result
including both uses of WebView. In line with the previous work [1,
8], we have observed that WebView is a commonly-used component
as around 92% of the applications in our dataset make use of it in
their core application code (i.e., not used by advertisement libraries).
Among the applications that include at least one WebView in their
core code, 77% of them use JavaScript interfaces, and 70% use event
handlers. However, it can be observed that there is a sudden drop
in the numbers when it comes to the use of HTMLS5 APIs. This
might be happening for two reasons. On the one hand, developers
generally do not wish to grant access to permission-protected re-
sources to external domains, and apps can operate without having
to rely on external web origins. On the other hand, even though
more than 85% of the apps in our dataset target API 21 or higher
and are able to handle HTMLS API requests, they simply decide
not to do so, possibly due to the complex request handling logic
of the HTMLS5 APIs. Since the majority of the apps require API
21 or higher, they need to comply with the run time permissions
introduced by Android 6.0. This means that each time they wish to
grant access to a web domain, they also need to check if the app
was granted the permission of interest by the user and, if not, they
must prompt the user to grant it. On top of this, they also need to
implement origin-based access control; hence, they need to main-
tain the necessary data structures and track user preferences. This
process is unnecessarily cumbersome. If the system provides the
necessary infrastructure to allow developers to uniformly declare
their security policies, this would minimize effort and reduce the
likelihood of errors, irrespective of the underlying channel (whether
that is a JavaScript interface, an event handler or an HTMLS5 API).

3.3 Case Studies

Previous work has shown how applications built with hybrid
frameworks suffer from JavaScript bridge vulnerabilities since hy-
brid frameworks rely on these bridges to give application code
access to device resources like the camera, contact list and so on [2,
3]. However, the problem is not constrained to hybrid applications.
In fact, an application that uses an embedded browser to display
web content and needs enhanced communication between the web
domain and the app, is susceptible to similar exploits. Here, we
investigate the understudied JavaScript bridge issues that exist in
non-hybrid applications. In particular, we present our analysis on
two widely-deployed applications distributed through the Google
Play store, which we found as suffering from JavaScript bridge
issues. Indeed, we show that the exposure of these bridges to adver-
saries can be detrimental to users’ privacy and can adversely affect
the application’s flow. We have disclosed these issues to the devel-
opers of those apps but—at the time of writing—haven’t received a
response.

CVS Caremark. CVS Caremark is one of the Android apps offered
by the American pharmacy retail company CVS. It has been down-
loaded 100,000 times so far and currently has a rating of 3.6. It
allows users to track their prescription history, get refills or request
mail service for new prescriptions, and get information about drugs
and their interactions. In order to help their users with their medical
needs, the app requires them to register to the CVS system with
their name, health care ID, and email address. The app additionally
tracks some other personal information, including the user’s phar-



Used Web Features # (%) incore # (%)inad #inboth core and ad Total # (%) |
WebView 1226 (92%) 551 (41%) 544 (41%) 1233 (92%)
JavaScript enabled 1189 (89%) 495 (37%) 482 (36%) 1202 (90%)
JavaScript Interfaces 945 (71%) 395 (30%) 361 (27%) 979 (73%)
@JavaScriptInterface 587 (44%) 328 (25%) 182 (14%) 769 (58%)
onJsPrompt 857 (64%) 202 (15%) 172 (13%) 887 (66%)
onJsAlert 696 (52%) 259 (19%) 227 (17%) 923 (69%)
onJsConfirm 699 (52%) 214 (16%) 184 (14%) 883 (66%)
onGeolocationPermissionsShowPrompt 567 (42%) 169 (13%) 133 (10%) 700 (52%)

onPermissionRequest 32 2%) 0 (0%) 0 (0%) 32 2%)

Table 1: Prevalence of WebViews and use of WebView APIs (#: absolute number, %: percentage)

macy preferences and location. Furthermore, the app implements
some functionality to check the login state of users, retrieve some
internal database IDs, perform UI functionality such as displaying
date pickers, and invoke the browser to load a given URL.

CVS Caremark app uses WebViews to render web content, and uti-
lizes JavaScript interfaces to enable a tight communication between
the app and CVS web servers. It registers two different interfaces
with the WebView, of classes WebViewJavascriptInterface and
JavaScriptWebBridge, and names the JavaScript objects associated
with these interfaces “native” and “WebJSInterface” respectively.
We observed that the “native” interface implements some of the
main functionalities of the app (e.g., scanning prescriptions, regis-
tering users etc.) with access to device resources and exposes user’s
private information. Hence, it is highly possible that this interface
was meant by the developer to be used for internal use only, that is
by trusted CVS domains. On the contrary, the “WebJSInterface” is
possibly meant to be used in a more generic context and by untrusted
domains; hence, it exposes functionalities more conservatively. How-
ever, this attempt to protect the app and device resources by creating
two interfaces is not useful, since both of these interfaces belong to
the same WebView instance, which is used to load all URLSs. Hence,
the security of the app relies on implementing navigation control
correctly, by not allowing the app to navigate to untrusted domains
or to domains that might contain pages with untrusted elements. The
app simply does not make any attempt to mitigate the problem by im-
plementing navigation control to filter untrusted domains; hence, it
is vulnerable to JavaScript bridge attacks. Even if navigation control
was implemented correctly, this would not be enough to protect from
these attacks since even a trusted origin may include elements that
are of risky nature (e.g., iframe). We have successfully performed
an attack on this JavaScript interface bridge by navigating to our
attack URL which runs the code in 4. The attack domain was able
to retrieve personal information (like the user’s name, health care
ID, email address, pharmacy preference, and location) as well as
execute app functions such as using the camera on the victim device
for barcode scanning functionality and retrieving images of user’s
prescription drugs.

Job Search by Indeed. Job Search is an app released by Indeed, a
company that produces an employment-related search engine (in-
deed.com), to allow users to search for jobs on their Android devices.
The app is downloaded 10,000,000 times and has a rating of 4.1.
Most of the content displayed to the user in the app is fetched from
Indeed’s web domain (indeed.com) and rendered in a WebView. This
is done mainly to reuse the UI code of Indeed’s web domain in order
to reduce the app development effort and simplify maintenance of its
deployment. Similarly to the CVS Caremark app, JobSearch creates
and uses two types of WebView classes, one (of class IndeedWebView
that extends the WebView class) for internal use and another (of class

Listing 4: JavaScript interface exploitation in CVS Caremark

function beEvil() {

deviceInfo = native.getDeviceInfo()

clientID = native.getBenefactorClientInternalld()

geolocation = native.getGeolLocation()

loginState = native.getlLoginState()

userName = native.getUserName()

preferredPharmacy = native.getPreferredPharmacy()

native.scanRx() // scan barcodes

// get prescription barcode image

prescriptionImage = native.getFrontRxImgData()

data = constructData(deviceInfo, clientID, geolocation,
loginState, preferredPharmacy, userName,
prescriptionImage)

// Send data to server

b=document.createElement('img"')

b.src="http://123 . %*%x *xx_ *xx/?data="+ data

native.setPreferredPharmacy("WhicheverPharmacyIWant!")

ExternalWebView that extends IndeedWebView) for showing external
content such as job descriptions from untrusted domains. The app
attaches a JavaScript interface (named “JavaScriptinterface”) to
the internal WebView, while not exposing any such interfaces to
the external one in an attempt to protect resources from external
domains. The app also takes precautions to restrict navigation in the
internal WebView by removing all the hyperlinks in the rendered
text content; hence, it supposedly does not allow loading of external
URLs in this WebView. However, the app also offers the user the
choice of adding web sites as a part of their profile and allowing
the user to navigate to these sites. This breaks the developer’s no-
load assumption on the internal WebView for pages from external
domains, and thereby puts the exposed JavaScript interfaces at risk.
In fact, we were able to access the JavaScript interface by navigating
to our "malicious" website in the internal WebView. In this interface,
the app offers the device’s unique ID, enabling/disabling Google
Now, checking if this device is registered with Indeed, getting user’s
registration ID, and registering the device with Indeed.

3.4 Adversary Model

Based on our observations on how JavaScript bridge vulnerabili-
ties can be exploited, we assume a web adversary who owns web
domains and/or ad content in which he can place malicious code.
Mobile web apps render the malicious domains and malicious ad
content through their embedded browsers. Such an app can reach
a malicious domain when the user starts navigating through the
embedded browser. Moreover, malicious ad content can be offered
by the adversary to both the app’s trusted domains and to other
untrusted domains. We assume that the adversary can reverse en-



gineer the victim app code to identify the exploitable JavaScript
bridges. The adversary can achieve this by first downloading the
victim app’s apk using existing frameworks for crawling Google
Play store, and then decompiling it with any of the existing dex
decompilers (dex2jar [11], JD-GUI [12], apktool [13] etc.).

4. DRACO ACCESS CONTROL

Running code from untrusted origins in a WebView can be detri-
mental to users as the foreign code can compromise users’ privacy
and disturb their experience by exploiting the WebView’s tight-
coupling with the application code and device resources. A straight-
forward way to address this threat is to simply prevent the user from
visiting untrusted web pages. However, there are cases where this
is impossible to achieve since even trusted domains might embed
untrusted components in their web pages. Hence, it is necessary to
provide an access control mechanism for WebViews that can distin-
guish the source of foreign code that is being executed and grant
access only if the source is trusted by the developer or by the user. To
tackle this problem, in this work, we propose Draco, a fine-grained,
origin-based access control system for WebViews, which consists of
two major components: 1) an access control policy language that we
call the Draconian Policy Language (DPL), which allows app de-
velopers to declare policy rules dictating how different components
within a WebView should be exposed to different web origins, and
2) a runtime system we call Draco Runtime System (DRS), which
takes policy rules on system and internal app resources (i.e., Java-
Script bridges) as an input from the developer and enforces them
dynamically when a resource request is made by a web origin.

4.1 Design Goals

Before we go into the depths of our policy language and the
Draco runtime access control on WebViews, it is important to dis-
cuss what our design goals are and how they affect the architecture
of our system. Previous work focuses on access control only on the
permission-protected parts of the exposed bridges in hybrid frame-
works. Our goal is to provide developers with a fine-grained access
control model, which will enable them to express access control
policies on all parts of all access channels for all use cases of Web-
Views (i.e., in hybrid and native apps). These channels are namely
the JavaScript interface, the event handlers, and the HTML5 API.
App developers should be given full control on all of the channels,
that is, they should be able to specify which origins can access
which parts of the channels and assign permissions to trusted origins.
They should also be given the flexibility to delegate decisions to
the user when needed. Draco should avoid modifications on any
parts of the operating system and should be implemented as part
of a userspace app. This would allow the system to be readily and
immediately deployable, while enabling frequent updates that are
disjoint from firmware updates. Additionally, Draco should be able
to enforce policy rules efficiently and its policy language should be
easy to understand and use for developers, as well as easy to extend
if necessary.

4.2 Draconian Policy Language

Draco supports a declarative policy language that allows app
developers to describe their security policies with respect to remote
code origins. Here we present the Draconian Policy Language (DPL)
and provide examples to demonstrate its expressiveness.

Grammar. We want to instantiate a capability-based access control
scheme based on least privilege and allow specification of what
resources each remote origin can access and how they can access
them. By default, if a DPL rule does not exist to allow the web code

to access any resource, then access is denied. We use the Backus-
Naur Form (BNF) notation [14] for context-free grammar to describe
the new policy language. Terminals are denoted by single-quoted
literals.

Draco allows developers to write policy rules which dictate how
sensitive resources can be accessed by web code. We define the
syntax of a DPL rule as:

(policy rule) ::= (subject) ‘;” (trust level) | (subject) *;’
(channel) *;’ {(decision point)

Each Draconian policy rule is applied on a subject. The subject
indicates the web origin whose web content was loaded in the Web-
View. Here, a remote origin is represented by a URI scheme (i.e.,
http or https), a hostname and a port number as in the same origin
policy. We allow wild cards for origins in our language, in order to
allow creation of rules that can be applied to any origin. Addition-
ally, we allow wild cards for sub-domains in domain names (e.g.,
(*).mydomain.com) to enable rules that can assign all hosts under
the same domain the same access characteristics.

(subject) ::= ‘x| {(protocol) (hostname) {port)
(protocol) ::= ‘http://’ | ‘https://’ | @
(hostname) = (subdomain) (domain name)
(domain name) ::= string
(subdomainy ::= “(*).” | (name) ‘.” | @
(name) = string
(port) == " (port number) | @

(port number) ::= integer

A trust level is an abstraction that allows developers to instantiate
default policies. Our system supports three trust levels:

(trust level) ::= ‘trustlevel’ ‘<’ (frust level options) >’

(trust level options) ::= ‘trusted’ | ‘semi-trusted’ | ‘untrusted’

A trusted subject is allowed to access all resources whereas an
untrusted subject is never allowed to access any resources through
any channels. A semi-trusted domain can access exposed functional-
ity but only through user interaction. At this point it should be clear
that our policy language allows for essentially whitelisting domains.
However, this is still not expressive enough. Consider for exam-
ple the case that we want to allow a subject to access the exposed
JavaScript interfaces but not run HTMLS code that can unilaterally
access resources. Towards this end, the second part of the DPL rule
definition allows for such fine-grained declarations. In particular
an app developer can specify which channel should be protected.
A decision point dictates whether such a policy rule should be en-
forced transparently to the user or only when the user agrees to it.
If left empty, then “system” is assumed which forces the system to
enforce the rule transparently to the user. If “user” is chosen then
the system delegates the enforcement decision to the user at the time
of the access attempt. DPL also allows app developers to provide
a description message for the user. This can be useful in cases the
DPL rule governs resources at a very fine-granularity (e.g. at the
method level) which might be challenging for the user to understand.



In such cases a semantically meaningful message provided by the
app developer could help the user better perceive the context.

(decision point) ::= ‘decisionpoint’ ‘<’ (decision maker) ‘>’
(description)
(decision maker) ::= ‘system’ | ‘user’ | &
(description) ::= ‘<’ (text) >’ | &

(text) ::= string

The channel definition is more intricate: Draco needs to allow
greater levels of rule expressiveness to enable developers to dictate
fine-grained policies. Every channel has its own idiosyncrasies and
exposes resources in different ways. This obviates the need for
allowing different specifications for each channel. Thus, an app
developer should be able to choose the channel they want to protect:

(channel) ::= (event handler) | (html5) | {jsinterface)

Our access control follows a least privilege approach: by default
everything is forbidden unless there is a rule to allow something
to happen. In particular, for the event handler channel, our pol-
icy allows app developers to specify how the whole channel can
be accessed by the subject, but also—need be—to define which
permission-protected APIs can be utilized by each event handler
method. This is reflected in the policy language as follows:

(event handler) ::= ‘alloweventhandler’ ‘;’ ‘<’ (eh methods) *>’
;7 < (permission list) >’

An event handler method list (es method list) can be a single event
handler method, or a list of event handler methods. Furthermore,
developers should be allowed to specify a list of permissions for the
exposed event handler methods:

(eh methods) ::= ‘all’ | (eh method list)

(eh method list) ::= (eh method) | (eh method) *,’

(eh method list)
(eh method) := ‘onJsHandler’ | ‘onJsPrompt’ | ‘onJsConfirm’
(permission list) ::= (permission) | {permission) *,’

(permission list) | @

where a <permission> can be any of the Android permissions.
Similarly, for the html5 channel one can specify the WebKit per-
missions that web code can make use of:

(html5) ::= ‘allowhtml5’ *;” ‘<’ (HTML permission list) >’

(HTML permission list) ::= (HTML permission) |
(HTML permission) <,” (HTML permission list)

(HTML permission) ::= ‘VIDEO_CAPTURE’ | ‘AUDIO_CAPTURE’ |
‘GEOLOCATION’ | ‘PROTECTED_MEDIA_ID’ | ‘MIDI_SYSEX’

Lastly, for the jsinterface channel, our policy language allows de-
velopers to describe how every Java class and Java method exposed
to JavaScript can be accessed by the subject:

LR bl

(jsinterface) ::= ‘allowjsinterface (class methods) *;” <
(permission list) >

(class methods) = (class name) ‘<’ (methods) *>’
(class name) ::= string

(methods) ::= ‘all’ | (method list)
(method list) ::= (method name) | (method name) *,’
(method list) | &

(method name) ::= string

Expressiveness. As with any language, there exist an intrinsic trade-
off between the usability of the policy language and its expressive-
ness. On the one hand, a usable policy language is of low complexity
but at the same time limited on the policies it can express. On the
other hand, a complex policy language can express more fine-grained
rules. DPL strikes a careful balance between the two by aiming to ex-
press selected set of useful policies at the method level with one-line,
concise rules.

Consider for example the case where a developer of a low risk
application would like to allow their web service ( “mydomain.com”)
to run code within the WebView of the host app. In such cases, the
developer could simply provide a rule as follows:

https://mydomain.com;trustlevel<trusted>

Given only this rule, the system forbids any web code of origin
other that “mydomain.com” to access any exposed functionality
from the host app. At the same time, the trusted “mydomain.com”
can benefit from all the exposed features.

In the aforementioned vulnerable case of the CVS Caremark
app (see Section 3), it is evident that the app developers wanted
to allow the CVS domains to access a rich JavaScript interface
(WebViewJavascriptinterface) and other domains to access a more
conservative JavaScriptWebBridge interface. This could be simply
described by the app developer and enforced by DRS providing the
following DPL rules:

I https://www.caremark.com;allowjsinterface;
WebViewJavascriptInterface<all>;decisionpoint<system>

*;allowjsinterface;JavaScriptWebBridge;decisionpoint<user>

where “*” is a wildcard that can match any origin. The former rule
allows only CVS domains to access the sensitive APIs, whereas the
non-sensitive app functionality can be exposed to all domains after
user approval with the latter rule.

In the case of the “Job Search” app by Indeed, the developer could
simply provide the rule:

I (*).indeed.com;allowjsinterface;JavaScriptInterface;
decisionpoint<system>

This will allow only code from “indeed.com” to use the exposed
JavaScript interfaces. The developer does not need to worry about
implementing two different WebViews, one for secure domains and
one for untrusted domains. Furthermore, navigation will not be an
issue as the system transparently allows only the “(*).indeed.com’
domains to access sensitive APIs.

In fact, we identified by looking at the decompiled application
code that the “Job Search” developers have written around 550 lines
of code, aiming to achieve separation between trusted and untrusted
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domains by using a second fully-developed WebView (along with
custom-built Activity, WebViewClient, WebChromeClient classes),
and yet the app was still vulnerable. In contrast, one line of code
with the Draconian Policy Language is enough to secure the app
with Draco. Additionally, even though DPL allows the construction
of very fine-grained policies, it can be seen from these examples
that simple and easy-to-construct policy rules can be sufficient in
many practical cases. Consequently, our system can provide strong
protection to apps and minimize developers’ efforts with an easy to
use policy language.

MyStore example. To demonstrate more fully the expressiveness
of DPL, we consider a more elaborate scenario. Let us assume that
MyStore is a large retail company that aims to incorporate Eddys-
tone [15] Bluetooth Low Energy (BLE) [16] beacons on product
shelves in its stores [17]. These beacons broadcast URLs for the
product they advertise using the BLE protocol. MyStore also pro-
vides its clients with a shopping app, namely MyStore App, which
scans for the BLE beacon advertisement messages and displays the
web page of the advertised products in a WebView. The advertised
websites provide further information about the product such as de-
scription, images, reviews etc. These web pages can belong to the
web domain of MyStore (mystore.com), or to the MyStore suppliers
that partner with MyStore to use store beacons. MyStore App collects
auser’s profile and preferences, allows her to scan product barcodes,
and also acquires the location of the user’s mobile device to perform
analytics in order to better their services.

MyStore App is a mobile web application that uses components
from mystore.com via the help of the WebView embedded browser,
and exports device resources and app functionalities through Java
Script bridges. In particular, it exposes the MyInterface Java class,
which features the following functions: getAge(), getGender(), get
StoreLocation(). MyStore wants to allow mystore.com to access
all the JavaScript Interfaces and resources of MyStore App. At the
same time, it wants to allow its partners’ web domains to access the
location of the store for them to know where their products are being
seen. Furthermore, it wants to provide its partners the opportunity to
get the user’s age and gender. However, providing this information
might entail privacy concerns. Thus, the store wants to allow their
partner to access this information only if the user agrees, which will
not violate the user’s expectations and thus minimize the privacy risk.
Enforcing this complex interactions can be extremely challenging
with the current state of affairs on the Android platform, since it
might require implementing multiple WebViews with different levels
of exposure and duplicating method definitions. However, it becomes
much easier when Draco is used. Consider for example the following
Draconian policy rules:

mystore.com;trustlevel<trusted>
partner.com;allowhtml5;permission<GEOLOCATION>

partner.com;allowjsinterface;MyInterface<getlLocation>;
decision<system>

1 partner.com;allowjsinterface;MyInterface<getAge,getGender>;
decision<user><"Access to age and gender">

The first rule allows mystore.com to access all exposed resources on
all channels. The second and third rule allow the trusted partner.com
domain (e.g., partner companies) to access the location through ei-
ther HTMLS APIs or exposed interfaces of the MyStore App. Finally,
the last rule allows partner.com to access the exposed functions that
provide the user’s age and gender only if the user agrees.

4.3 Draco Runtime System

Draco’s other major component is its runtime system, namely
the Draco Runtime System (DRS). A key aspect of the design of
DRS is to avoid any modifications in the Android OS to make DRS
easier to both deploy and update. In particular, DRS is built on
top of the WebView system app on Android. This requires making
modifications only in the Chromium source code [5], which is the
provider of the WebView implementation on the Android platform.

High-level architecture. Keeping our design goals in mind, we im-
plemented DRS in Chromium [5], which is a system library residing
in the Android WebView system app, providing the WebView im-
plementation to the Android apps. Figure 1 illustrates our design in
more detail. The app developer provides DPL rules to the WebView
programmatically through their Android app. DRS features a Policy
Manager class (i.e., PolicyManager), which parses the policy rules
and inserts them into a policy map data structure. We also imple-
mented a unit for decompiling the app and statically analyzing it
to determine the permissions necessary to successfully execute the
methods in exposed Java class methods and event handlers. This is
necessary because we allow the developer to assign subjects a set
of permissions they are allowed to use for each channel and do not
assume any cooperation other than entering policy rules. In particu-
lar, in the case of JavaScript interfaces and event handlers, we need
to know beforehand what permissions the requested method uses
in order to determine if the subject under investigation is granted
all of the permissions required by that method. DRS employs an
Information Unit which hosts and manages the two data structures
corresponding to policies (policy map) and the permissions used by
class methods and event handlers (permission map). During invoca-
tion on any of the three aforementioned channels, DRS intercepts
the invocation and checks if any one of the policy rules allows the
subject to execute or access the requested part of the channel, or
if the user needs to be prompted for a decision. If the request is
allowed according to the developer policies or by the user, DRS lets
the invocation go through, otherwise it gracefully blocks the request.

Note that it could be the case that the app itself runs web code
loaded from its local files. For example, the loadurl() method can
be invoked with “file://”” which loads a html file from the local
storage or with “javascript://” which invokes the inline JavasSript
code with no origin. Since the subject of this execution is the app, we
treat this as trusted. However, there could be cases where web code
can run with undefined origin (e.g., by loading code with the eval
JavaScript function). Our system completely blocks such attempts.

Parsing module. Draco allows developers to enter policy rules
into the WebView without having to modify the source code of the
Android Open Source Project (AOSP). We considered extending
the Android Manifest file with policies (as was done in previous
work), as well as using annotation tags as policy rules on the exposed
Java code. However, both of these approaches require changes to be
made on the Android platform itself; the former requires changing
the parsing logic in the Package Manager, and the latter requires
changing the WebView APIs.

In our work, we exploit the existing loadUrl method in the Web-
View API, and piggy-back rules into the WebView. As we explained
before (see Section 2), the 1oadUrl method takes a URL string as an
input argument and loads this URL. It can also execute JavaScript
code if the given string starts with the “javascript:” tag. We extend
the functionality of loadUrl within the WebView system app, to
capture strings that start with the “policyrule:” tag which indicate
a Draconian policy rule for the WebView. DRS’s Policy Manager
class is implemented in the facade Java layer of Chromium, and is
responsible of parsing DPL rules and inserting them into the data
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Figure 1: Draco Runtime System (DRS) architecture.

structures we utilize for enforcement. This class uses the Java Native
Interface (JNI) to talk to its native “back end” that performs these
functionalities in C++. This structure makes it easier to communi-
cate the policies to the Chromium implementation that performs
most of its main functionalities in native code (C++).

App decompilation and static analysis unit. For the enforcement
of permission-based DPL rules that regulate the use of sensitive APIs
in the JS interface and event handler channels, we need to determine
the permissions used in a given class and its methods for JavaScript
interfaces, and permissions used in the event handler callback meth-
ods for the event handlers channel. Such a permission-based rule
might be expressed informally as follows: “Origin X can access a
method which makes sensitive API calls that require permissions
Y, Z only if it’s given these permissions by the developer.”. Doing
this without the help of the developer (e.g., by submitting the list of
methods with the used permissions) requires static analysis on the
application code to retrieve the permissions used in the JavaScript
interface classes and their methods, and in the event handlers. DRS
uses apktool [13], which works with a success rate of 97.6% [18],
to decompile the app into smali bytecode, then finds the exposed
JavaScript interface classes and the event handlers declared in DPL
rules, and processes them to find the permissions that are required
by them. This requires determining the sensitive API calls made in
the class methods and the event handlers. DRS utilizes the API-to-
permission mapping released in PScout [19] and searches for the
API calls specified in this mapping in the app’s decompiled smali
code. This provides DRS with a list of used sensitive API calls and
their corresponding permissions required by each class method and
event handler. DRS performs this process in the background, only
during app installation and update time and saves the results in a file
in the app’s data folder to avoid repetition of this process.

Information unit. At the core of the PolicyManager lie two com-
ponents: the policy map and the permission map. The Policy map
uses a hash map to keep track of the developer DPL rules (as key
value pairs). It uses a string for its key, and a vector of strings for the
value. The key consists of the subject, channel name, and type of
the channel option, namely class name (for interfaces), function (for
event handlers), or permission (all channels). In case the channel
option is a JavaScript Interface class name, the vector of strings

(value for that key) consists of the name of the allowed methods for
that interface. As for permission for the channel option, this vector
will be the name of the allowed permissions. The Permission map
is used for tracking the used permissions in a given class and its
methods for JS interfaces, and for tracking permissions used in event
handler methods. The list of permissions for these methods will be
retrieved from a permission file created by the aforementioned static
analysis unit.

Enforcement. Chromium works based on a multi-process architec-
ture (Figure 2). Each tab (called Renderer in Chromium jargon) in
the browser is a separate process and talks to the main browser pro-
cess through Chromium inter-process communication (IPC). Even
though WebView is based on Chromium, it does not inherit this
multi-process architecture. Instead, it keeps the same code structure
but adopts a single process architecture, due to various reasons in-
cluding the difficulty of creating multiple processes within an app
in Android, concern for memory usage in resource-limited envi-
ronments, synchronization requirements of Android Views, as well
as other graphics related issues. DRS policy enforcement is imple-
mented in the native part (C++) of the Browser component of the
Chromium code 2. This is because this is the point of invocation for
all of the channels and most of the necessary information to perform
access control already resides in this component.

e JavaScript interfaces. For the JavaScript interfaces, the origin in-
formation is not passed to the Browser component with the creation
of a bridge object. Hence, in the Renderer, we get the security origin
(as in same origin policy) of the calling frame and propagate this
information to the Browser. When the invocation happens, we know
the name of the class method the origin wants to execute, however,
we have no way of knowing the class name of the object this method
belongs to since C++ provides no way of retrieving the name of a
Java object’s class in run time. That is why, the retrieval of the class
name needs to be done in the Java facade layer in Chromium in order
to be communicated later to the native layer. This is done after the
call to addJavaScriptInterface (so that we do not have to change
this API method) and before the object moves to the native side (so
that we still have class name information). Given the channel name,
class name, method name and the web origin, the Policy Manager
is able to make an access control decision for this origin using the
aforementioned data structures to check if the required policies exist
for this domain to execute the method. The Policy Manager first
checks if the origin has access to the given method of the class,
and if that is the case, it performs the permissions checks to see
if the permissions given to the origin would be a superset of the
permissions used by the requested method. If the origin passes both
checks, then it is allowed to perform the invocation of the requested
method. However, if the decision point set in the respective DPL
rule is set to “user”, then the user is prompted with the description
provided for this rule to make the access control decision.

e Event handlers. For the event handler channel, all the information
necessary for enforcement exists in the Browser component. Hence,
given the channel name, origin, and the name of the event handler
method, the Policy Manager can enforce the policy. The enforce-
ment logic is similar to that for JavaScript interfaces. The Policy
Manager first checks if the origin is allowed to execute the event
handler method for a given JavaScript event. If so, it then performs
permission checks on the event handler to see if the origin is granted
the permissions to execute the handler. If that is the case, then the
origin is granted access to this event handler.

e HTMLS5 API For this channel, DRS intercepts the entry point
of the onGeolocationShowPrompt callback for geolocation and the
onPermissionRequest callback for other HTMLS5 resources in the
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native part of Chromium code. We retrieve the resources from the
request object in Chromium and for each resource ask the Policy
Manager whether there is a rule allowing the origin to use that
permission, or ask the user if the developer specifies in the DPL rule
for the user to be consulted. If the origin is allowed by a DPL rule
(and by the user if needed), DRS allows the origin to go through
with the invocation, else DRS gracefully blocks the request.

S. SYSTEM EVALUATION

In this section, we evaluate the effectiveness and performance of
Draco on commercial off-the-shelf (COTS) devices.

5.1 Effectiveness

In Section 3, we described attacks on the CVS Caremark and Job
Search apps. To evaluate the effectiveness of Draco, we enhanced
the apps with DPL rules as these are described in Section 4.2. We
have installed the apps on a Nexus 5 phone running Android 6.0.
We have also updated the WebView system app to a version en-
hanced with the Draco Runtime System. In both cases, we found
that Draco successfully blocks all illegitimate access attempts by
spurious domains. At the same time, the legitimate domains can
function properly and the app remains fully functional.

5.2 Performance

As explained before, DRS consists of: 1) a static analysis unit
for determining the permissions used by class methods and event
handlers, 2) a parsing module that dissects the policy rules entered
by the developer and permissions used by class and event handler
methods and inserts them into our data structures, and 3) an enforce-
ment unit that intercepts invocations on JS bridges and invocations
made via HTMLS5 APISs to ensure that the origin making the request
is granted the access right by the developer and to block the request
otherwise, or to prompt the user for granting permissions. We will
analyze the performance of each component separately. We conduct
all of our experiments on a LG Google Nexus 5 smartphone, which
runs Android 6.0 (Marshmallow) and is equipped with 2.26GHz
quad-core Qualcomm Snapdragon 800 processor and 2GB RAM.

App decompilation and static analysis unit. We first require the
decompilation of class files associated with Draconian policy rules
into smali bytecode. Currently, we are performing this off-line (not
on Android); however, there are existing tools that can decompile
apps on the Android platform. For example, apktool [13] decompiles

| Static Analysis cost average (s) standard deviation |

small class (5 methods) 3.004 0.054
medium class (10 methods) 5.940 0.114
large class (15 methods) 8.766 0.167

Table 2: Runtime for static analysis on Nexus 5

all the resource and class files in the target app between approxi-
mately 60 to 90 seconds, depending on the size of the app. Another
tool, DexDump [20], can perform app decompilation much more
efficiently since it parses classes on demand. We hope to borrow
from their techniques and use them in our future implementation.

After decompiling the target app, we statically analyze the classes
associated with Draconian policy rules to determine which permis-
sions are used by each exposed method. Table 2 shows the perfor-
mance results of permission extraction of class methods for three
cases: 1) a small class with 5 methods (506 smali instructions), 2)
medium-sized class with 10 methods (1106 smali instructions), and
3) a larger class with 15 methods (1706 smali instructions). Here,
the total number of smali instructions in methods is the dominating
factor for the performance since for each instruction we perform a
lookup in our data structure for PScout mappings.

Policy parsing module. The Parsing module runs each time the
app is launched by the user in order to populate the in-memory
policy and permission maps. As explained before, there are two sub-
components of the parsing module; the policy parser, which simply
parses the policy rule inserted by the developer, and the permission
parser, which parses the output of the static analysis to identify
the permissions used by class methods and event handlers for the
classes and event handlers declared in the DPL rules. Both of these
components incur minimal overhead: in total, we identify the run
time of the parsing module to be in the order of miliseconds as shown
in Table 3. This cost is negligible compared to the launch time of
Android apps, which is expected to be in the order of seconds [21].

e Policy parsing. The complexity of the inserted DPL rule can
change the total run time of the parsing operation. In order to inves-
tigate how rule complexity affects performance, we have considered
three types of rules: 1) a simple DPL rule that involves 5 class meth-
ods, 2) a large DPL rule that involves 15 class methods, and 3) a
semantically large DPL rule that involves all class methods (i.e., uses
all tag). Listing 5 shows how these rules can be added to the app. We
only investigate the performance for the JavaScript interface chan-
nel; however, the results are comparable for other channels since
the construction of the policy rules are similar. We run each experi-
ment 10 times and report average run time and standard deviation.
Table 3 shows the results for the three types of policy rules (case
1,2,3). First we observe that the parsing overhead, is negligible, in
the order of a few miliseconds. Additionally, as the number of class
methods increases (from 5 to 15), the run time slightly increases.
This is simply because number of insertion operations performed
is proportional to the number of class methods in the rule(O(n)).
However, for a policy that addresses all class methods, the run time
is even smaller than that of a simple policy. This is because all tag
semantically means that all class methods are involved, and when it
is used, we do not require insertion of all the class methods into the
policy map one by one.

e Permission parsing. The performance of permission parsing is
affected by the the number of permissions used by the app, and
the number of sensitive API calls (i.e., required permissions for the
sensitive API call) used in each method. It has been shown that
on average Android apps use five permissions [22]. Therefore, we



Listing 5: Small, large, semantically large rules for JS interfaces

// small policy rule
mWebView.loadUrl("policyrule;allowjsinterface;
https://mydomain.com;GeoWebViewActivity$JsObject<classMethod1,
classMethod2,classMethod3, classMethod4, classMethod5>");

// large policy rule
mWebView.loadUrl("policyrule;allowjsinterface;
https://mydomain.com;GeoWebViewActivity$JsObject<classMethod1,
classMethod2, ..., classMethod14, classMethod15>");

// (semantically) large policy rule
mWebView.loadUrl("policyrule;allowjsinterface;
https://mydomain.com;GeoWebViewActivity$JsObject<all>")

Parsing cost average (ms) standard deviation
(1) small policy 1.874 1.248
(2) large policy 2.453 0.811
(3) semantically large policy 1.633 0.847
(1) w/ small permission file 2.428 0.820
(1) w/ large permission file 8.434 2.269

Table 3: Runtime for policy rule parsing and insertion on Nexus 5

consider two cases: 1) a small permission file (created by the static
analysis unit) for a class with five methods where each method uses
five or less permissions, 2) a large permission file with 20 class meth-
ods and five permissions for each method. We consider the second
case to be not very likely to occur and use it only as an upper bound
on the performance for permission parsing. For both of these cases,
we use a simple policy rule (including 5 methods), with the addition
of the permission list that contains all the five permissions the app
(without using all tag) grants to the given subject. Table 3 shows
the results of policy parsing (which include permission parsing). As
can be observed from the table, the run times are still in the order
of milliseconds, with the total run time being higher for when the
permission file that contains many methods that use all of the app
permissions.

Enforcement. It is important for the enforcement to be efficient
since this an action that is expected to be performed frequently
during the lifetime of an app. Thus, any delay can affect the app’s
run time performance and degrade user experience. Here, we take
a closer look at the performance of the enforcement unit for the
JavaScript interface and HTMLS channels. We do not present our
results for the event handler channel since they are intrinsically
similar to those of the JavaScript interface channel. For the former
cases, we report the average time it takes (and standard deviation)
to allow and disallow an origin.

e JavaScript interface channel. We take the same approach as in our
evaluation for policy parsing, and perform enforcement correspond-
ing to small (5 methods), large (15 methods) and semantically large
(all methods) policy rules. For each case, we assume the origin wants
to access the method that is the last method in the provided method
list so that we get an upper bound on the run time (since we perform
linear search in vector that contains the methods associated with a
policy rule). Table 4 shows the results for the JavaScript interface
channel. Evidently, the enforcement overhead is negligible (in the
order of microseconds).

o HTMLS5 API channel. For the HTMLS5 API channel, we consider
two cases: 1) an access control decision is made solely by the sys-
tem, and 2) the user is prompted to make a decision on the use of

Enforcement cost average (ms) standard deviation
small policy (allow) 0.356 0.260
small policy (block) 0.243 0.051
large policy (allow) 0.965 1.214
large policy (block) 0.551 0.124
semantically large policy (allow) 0.146 0.0252

Table 4: Runtime for enforcement on JavaScript interface channel
on Nexus 5

| Enforcement cost average (ms) standard deviation |

system (allow) 0.282 0.093
system (block) 0.130 0.029
user (allow) 0.326 0.116
user (block) 0.286 0.076

Table 5: Runtime for enforcement on HTMLS5 channel on Nexus 5

permissions. Table 5 shows the time taken by the system for both
of these cases for the HTMLS5 API channel. We do not show the
time the user takes to grant or revoke access to permission-protected
resources. Naturally, this will be at least in the order of seconds with
a large variation, and is many orders of magnitude larger than the
purely-system based access control decision. Again we observe sub-
millisecond delays highlighting the efficiency of DRS enforcement.

6. RELATED WORK

Previous work has discussed the problem that foreign code gov-
erns the same privileges as the host application in different contexts.

Protecting against third-party libraries and other inter-module
threats. Third-party libraries governing the same permissions as the
host app has been shown to be problematic by the previous work.
Working towards solving this issue, AdSplit [23] suggests separation
of ad components from the core app and running them in their own
processes for protecting against the malicious activities that can be
performed by potentially-malicious ad libraries. In [24], the authors
discuss the vulnerabilities due to the nonexistence of origin-based
protection on the Android system. More specifically, they show
that third-party libraries make host apps vulnerable to cross-origin
attacks on the app-to-app channels such as intent and the scheme
mechanism. Their solution, Morbs, gives developers a means to
express new policies about how two apps can communicate, and it
labels messages between apps with their origins so that the developer-
written permissions can be enforced at run time. One short-falling
of this solution is that it works for only app-to-app communication
channels. FlexDroid [25] gives developers a way of creating fine-
grained access control policies on the system resources for third-
party libraries based on Android permissions. To enforce the policies,
they examine the Dalvik call stack at run time to identify the origin
of the call and its associated permissions. Case [26] takes another
approach and instruments apps with a module that can mediate
access between the submodules (which can even be in the granularity
of a Java class) of the app. These solutions are not limited to only
app-to-app channels as Morbs and can protect an app against inter-
module threats; however, they do not provide protection against
arbitrary foreign content that can be loaded within a single in-app
module (e.g., via web containers).

Analysis, attacks, and defenses for WebViews. Vulnerability of
WebViews has been extensively discussed by previous work [7, 8, 1,
9, 10]. In [7], the authors present several classes of attacks that can
be launched against apps that use WebViews. Chin et al. present a



static analysis tool that can identify whether an app is vulnerable to
WebView attacks [8]. Mutchler et al. present a large-scale analysis
on mobile web applications, and present the trend of vulnerabilities
in these applications. None of these work implement any defense
mechanism targeting WebViews [1]. In [27], the authors present
an access control mechanism for WebViews. Their approach uses
static analysis to identify the use of security-sensitive APIs in the
exposed Java class, and notifies the user if any such use is found.
The user is then prompted to allow or completely block the binding
of the Java object. The main drawback of this approach is that
after the user allows the binding, they do not provide any origin-
based access control, so all the origins still have the same access
rights. Additionally, their focus is only on the permission-protected
resources.

WebView-related attacks on hybrid frameworks and bringing
origin-based access control. Georgiev et al. discuss the nonex-
istence of origin-based access control in hybrid frameworks and
propose a capability-based approach (NoFrak), where app developer
whitelists origins that are allowed to access system resources [2].
The drawback of their approach is that it works only for the Phone-
gap framework even though the aforementioned problem is not even
specific to hybrid frameworks. Additionally, the solution is not fine-
grained since a whitelisted origin get access to all resources of the
app. In [3], the authors propose fine-grained access control system
for hybrid apps, which allows developers to add origin permissions
to the manifest file and associate iframes with permissions, and en-
forces the developer rules in the operating system. One drawback
of this solution is that the web developer has to be compliant and
include the permission tag along with the desired permissions in
the iframes; otherwise, the frame just governs all the permissions
the main page is given to. Furthermore, even though this solution
provides a more fine-grained access control than NoFrak, it focuses
on only protecting permission-protected resources, and hence is not
enough to fully protect the app and its user as we have previously
shown. Moreover, neither of these solutions give developers the
flexibility to consult with the user on how to handle requests. In
[28], the authors present code injection attacks on hybrid apps. Even
though they mainly target hybrid frameworks, the attack shown can
be applied to all mobile web applications in general.

Fixing Web-based system apps. Georgiev et al. show that Web-
based system applications also suffer from similar problems, and
introduce POWERGATE, which provides access control on native
objects in the system by enforcing the policy rules created by the
developer [29]. Here, their focus is on native-access APIs provided
to the application by the platform, and not on the resources exposed
by the use of JavaScript bridges.

7. CONCLUSION AND FUTURE WORK

In this work, we investigate the understudied JavaScript bridge
vulnerabilities for native mobile web applications that use embed-
ded web browsers (WebView) to show content. We show cases
where highly-downloaded vulnerable Android apps inadvertently
expose their internal resources to untrusted web code. By investi-
gating the use of WebView APIs by app developers, we identify
the need for a unified and fine-grained access control mechanism
on WebView. Hence, we propose Draco, a unified access control
framework that allows developers to declare access rules for the
exposed resources with fine granularity and enforces these access
policies at runtime. Draco’s declarative policy language can be used
by app developers to create policy rules that specify their trusted or
semi-trusted origins with capabilities defining their access coverage
on the three access channels (JavaScript inteface, event handlers,

HTMLYS). Draco Runtime System then enforces these policy rules
in an effective and efficient manner. This approach also saves de-
velopers from implementing burdensome programming measures
(i.e., navigation control, multiple WebViews with different levels of
exposure) in an attempt to prevent exposed resources from web do-
mains. Draco is easily deployable since it does not require Android
OS modifications, but only enhancements in the Android System
WebView app. In future work, we plan to investiage the use of server
credentials for authorization, and explore efficient infrastructures
for credential management, credential distribution and revocation.
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